
Documentation and Validation of Py2Fly

Brian C. Vermeire and Sai Niranjan Jyothimahalingam

February 16, 2022

1

Contents

1 Thin Airfoil theory 4
1.1 Summary and Derivation [1] . 4
1.2 The Python Code . 11
1.3 Test case . 13

2 Vortex Panel Method 15
2.1 Summary and Derivation [2] . 15
2.2 Explanation of the code . 17
2.3 Test case . 21

3 Finite Wing - Prandtl’s Classical Lifting-line Theory 23
3.1 Summary of the theory [1] . 23
3.2 Explanation of the code . 28
3.3 Validation . 30

4 Performance 32
4.1 Summary of the theory involved [3] . 32

4.1.1 General performance parameters . 32
4.1.2 Static stability . 39

4.2 The python code . 43
4.2.1 Performance . 43
4.2.2 Static Stability . 48

4.3 Validation . 49
4.3.1 Performance code . 49

2

List of Figures

1.1 Vortex sheet placed on the camber line . 4
1.2 Vortex sheet placed on the chord line . 5
1.3 Component of Freestream velocity normal to the camberline 6
1.4 Induced velocity on the chord line . 6
1.5 Moments about the leading edge . 10
1.6 NACA2412 - CL vs α . 13
1.7 NACA2412 - Moment coefficient . 14
2.1 Airfoil represented by Vortex panels . 15
2.2 NACA2412 - Lift curve . 21
2.3 NACA2412 - Pressure coefficient . 22
3.1 Finite number of horseshoe vortices superimposed on lifting line 23
3.2 Infinite number of horseshoe vortices superimposed 24
3.3 Comparison of Γ/Γ0 for a rectangular wing of AR 4 (NACA1412) 30
3.4 Comparison of Γ/Γ0 for a rectangular wing of AR 8 (NACA1412) 31
3.5 Comparison of CL for a rectangular wing of AR 5.536 (NACA0015) 31
4.1 Forces acting on an aircraft in level flight . 32
4.2 Typical variation of L/D ratio vs Airspeed at sea level 34
4.3 Typical variation of Thrust Required vs Airspeed 34
4.4 Typical variation of Power Required vs Airspeed 35
4.5 Forces acting on an aircraft in climb . 36
4.6 Typical variation of Rate of Climb vs Airspeed at sea level 37
4.7 Typical variation of Fuel Consumption vs Airspeed for steady level flight . . 38
4.8 Typical variation of Specific Range vs Airspeed at sea level 39
4.9 Understanding the location of the stick-fixed neutral point 40
4.10 Top view of an airplane experiencing sideslip 41
4.11 Front view of airplane showing effect of dihedral 43
4.12 Lift-to-Drag ratio . 50
4.13 Thrust Required . 50
4.14 Power Required . 50
4.15 Rate of Climb . 50
4.16 Fuel consumption . 51
4.17 Specific Range . 51

3

1 Thin Airfoil theory

1.1 Summary and Derivation [1]

Thin airfoil theory allows us to predict airfoil performance characteristics such as lift and
moment coefficients at different angles of attacks. The airfoils are modeled as ’thin’ airfoils,
allowing to model the airfoil by placing a vortex sheet along its camber line. The theory then
has to satisfy two conditions calculating the variation of the circulation along this camberline,
γ(s), such that the camber line is a streamline of the flow, and γ(TE) = 0; i.e. satisfying
Kutta condition at the trailing edge. The total circulation Γ can then be found out by
integrating γ(s) from leading edge to trailing edge. Using Kutta-Joukowski theorem, the Lift
is then derived from this circulation.

Figure 1.1: Vortex sheet placed on the camber line

Consider a thin airfoil in incompressible fluid flow with a freestream velocity V∞ and
angle of attack α. For thin airfoils, a reasonable assumption we can make is that a vortex
sheet placed on the surface of the airfoil can be approximated by a vortex sheet placed on the
camberline, which in turn is the same as a vortex sheet placed on the chord line for moderate
camber.

4

Figure 1.2: Vortex sheet placed on the chord line

As shown in figures 1.1 and 1.2, the x axis falls on the chord line and z axis is perpendicular
to the chord. The chord length is c. The camberline is defined by z = z(x) and the distance
measured along it is denoted by s. When placed on the camberline, the vortex sheet induces
velocity ω

′
which is normal to the camber line; ω

′
= ω

′
(s). Now, considering the vortex sheet

is on the chord as shown in the figure 1.2, here γ = γ(x). The strength is calculated such that
the camber line is a streamline of the flow and also γ(c) = 0 (satisfying Kutta condition).

If the camber line has to be a streamline of the flow, it means the component of velocity
normal to the camber line must be zero at all points along the camber line. If the component
of the freestream velocity normal to the camber line is denoted by V∞,n then, at every point
on the camber line

V∞,n + ω
′
(s) = 0. (1.1)

Now the normal component of freestream velocity can be determined simply by geometry.
Refer figure 1.3. At any point where the slope is given by dz/dx,

V∞,n = V∞sin[α + tan−1(−dz/dx)]

. Approximating sinθ ≈ tanθ ≈ θ,

V∞,n = V∞

(
α− dz

dx

)
. (1.2)

5

Figure 1.3: Component of Freestream velocity normal to the camberline

Now we have to determine an expression for ω
′
(s). Again, since we are dealing with thin

airfoils, the component of velocity (induced by the vortex sheet) normal to the camber line
can be approximated to the component of the velocity normal to the chord line.

ω
′
(s) ≈ ω(x)

.

Figure 1.4: Induced velocity on the chord line

To find an expression for ω(x), consider figure 1.4 which shows the vortex sheet along the
chord. An elemental vortex of strength γdξ is considered at an distance ξ from the origin

6

along the chord as shown. The strength of the vortex sheet is a function of the distance along
the chord; i.e. γ = γ(ξ).

The velocity dω at point x induced by this elemental vortex is given by

dω = − γ(ξ)dξ

2π(x− ξ)
. (1.3)

By integrating this expression from the leading edge (ξ = 0) to the trailing edge (ξ = c), we
can obtain ω(x) as

ω(x) = −
∫ c

0

γ(ξ)d(ξ)

2π(x− ξ)
. (1.4)

Substituting equations 1.2 and 1.4 in equation 1.1 we get

V∞

(
α− dz

dx

)
−
∫ c

0

γ(ξ)d(ξ)

2π(x− ξ)
= 0, (1.5)

which is
1

2π

∫ c

0

γ(ξ)d(ξ)

x− ξ
= V∞

(
α− dz

dx

)
. (1.6)

This is the fundamental equation of thin airfoil theory.
It is imperative to note that for a given airfoil at a given angle of attack, both α and

dz/dx will be known. Hence, in equation 1.6, the vortex strength γ(ξ) will be the only
unknown. The critical step now is to solve this equation for γ(ξ) such that it satisfies the
Kutta condition, i.e. γ(c) = 0.

Let’s take the case of a particular arbitrary airfoil. To deal with the integral in the
fundamental equation, transform the variable ξ to θ using the transformation

ξ =
c

2
(1− cosθ)

. Differentiating this, we get

dξ =
c

2
sinθdθ

.
The value of x corresponds to a particular θ, let it be θ0, such that

x =
c

2
(1− cosθ0)

. The limits of the integration transform to θ = 0 when ξ = 0 and θ = π when ξ = c.
Substituting all these in the equation, we get

1

2π

∫ π

0

γ(θ)sinθdθ

cosθ − cosθ0

= V∞

(
α− dz

dx

)
. (1.7)

7

Equation 1.7 has to be solved for γ(θ), such that it satisfies the Kutta condition i.e. γ(π) = 0.
Such a solution will make the camber line a streamline of the flow. This solution is directly
stated below

γ(θ) = 2V∞

(
A0

1 + cosθ

sinθ
+
∞∑
n=1

Ansinnθ

)
. (1.8)

The values of the coefficients, An depends on the slope of the camber line dz/dx and A0

depends on both dz/dx and α. Substituting equation 1.8 in equation 1.7

1

π

∫ π

0

A0(1 + cosθ)dθ

cosθ − cosθ0

+
1

π

∞∑
n=1

∫ π

0

Ansinnθsinθdθ

cosθ − cosθ0

= α− dz

dx
. (1.9)

Both the integral terms appearing above are forms of standard integrals which can be
reduced as follows ∫ π

0

cosnθdθ

cosθ − cosθ0

=
πsinnθ0

sinθ0

, (1.10)∫ π

0

sinnθsinθdθ

cosθ − cosθ0

= −πcosnθ0. (1.11)

Hence equation 1.9 can be simplified to

A0 −
∞∑
n=1

Ancosnθ0 = α− dz

dx

or
dz

dx
= (α− A0) +

∞∑
n=1

Ancosnθ0. (1.12)

This equation is in the form of a Fourier cosine series. In general, Fourier cosine series of
a function f(θ) over an interval 0 ≤ θ ≤ π is represented as

f(θ) = B0 +
∞∑
n=1

Bncosnθ, (1.13)

where the coefficients are given by

B0 =
1

π

∫ π

0

f(θ)dθ,

Bn =
2

π

∫ π

0

f(θ)cosnθdθ.

Thus, the coefficients in equation 1.12 can be represented as

(α− A0) =
1

π

∫
dz

dx
dθ0

8

or

A0 = α− 1

π

∫ π

0

dz

dx
dθ0, (1.14)

An =
2

π

∫ π

0

dz

dx
cosnθ0dθ0. (1.15)

It can be seen from the expressions that A0 depends on both α and the shape of the
camberline(dz/dx), and the values of An depend only on the shape of the camberline. Hence,
for a specific airfoil at a given angle of attack, the values of A0 and An can be calculated.

Next, we have to calculate the expressions for the aerodynamic coefficients. The total
circulation due to the vortex sheet from the leading edge to the trailing edge is given by

Γ =

∫ c

0

γ(ξ)dξ =
c

2

∫ π

0

γ(θ)sinθdθ. (1.16)

Substitute the expression of γ(θ) given by equation 1.8 into equation 1.16

Γ = cV∞

(
A0

∫ π

0

(1 + cosθ)dθ +
π∑
n=1

An

∫ π

0

sinnθsinθdθ

)
. (1.17)

From theory of integral calculus, we know∫ π

0

(1 + cosθ)dθ = π

∫ π

0

sinnθsinθdθ =

{
π/2 for n = 1

0 for n 6= 1

Hence equation 1.17 becomes

Γ = cV∞

(
πA0 +

π

2
A1

)
. (1.18)

Therefore, lift per unit span can be expressed as

L
′
= ρ∞V∞Γ = ρ∞V

2
∞c
(
πA0 +

π

2
A1

)
. (1.19)

Thus coefficient of lift can be expressed as

cl =
L
′

1
2
ρ∞V 2

∞c(1)
= π(2A0 + A1). (1.20)

which can be written as

cl = 2π

[
α +

1

π

∫ π

0

dz

dx
(cosθ0 − 1)dθ0

]
, (1.21)

and

Lift slope ≡ dcl
dα

= 2π. (1.22)

9

It is important to note that, irrespective of the airfoil characteristics, thin airfoil theory
predicts that the value of the lift slope will always be 2π.

Next, the moment about leading edge has to be calculated. As shown in figure 1.5, a
elemental vortex of strength γ(ξ)dξ located at a distance of ξ from the leading edge creates
a circulation whose value is given by dΓ = γ(ξ)dξ. So, the incremental lift created by
this elemental vortex is dL = ρ∞V∞dΓ. This creates a moment about the leading edge
dM = −ξ(dL).

Figure 1.5: Moments about the leading edge

The total moment per unit span about the LE, therefore, can be calculated as

M
′

LE = −
∫ c

0

ξ(dL) = −ρ∞V∞
∫ c

0

ξγ(ξ)dξ. (1.23)

We also know the expression for the moment coefficient

cm,le =
M
′
LE

q∞Sc
. (1.24)

Using similar transformation as was done before in the derivation of γ(θ) (equation 1.8),
and performing the integration, and substituting S = c ∗ (1)(considering unit depth), we get

cm,le = −π
2

(
A0 + A1 −

A2

2

)
. (1.25)

Substituting equation 1.20 in 1.25, we obtain

cm,le = −
[cl

4
+
π

4
(A1 − A2)

]
. (1.26)

10

The moment coefficient about the quarter-chord point is given by

cm,c/4 = cm,le +
cl
4
. (1.27)

Substituting equation 1.26 in equation 1.27, we obtain

cm,c/4 =
π

4
(A2 − A1). (1.28)

The location of the centre of pressure is given by

xcp = −M
′
LE

L′
= −cm,lec

cl
. (1.29)

Substituting the expression for cm,le from equation 1.26, we can obtain the expression

xcp =
c

4

[
1 +

π

cl
(A1 − A2)

]
. (1.30)

1.2 The Python Code

This section explains the crucial elements of the python code dealing with Thin Airfoi theory.
The inputs given are geometry of the airfoil, specifically the coordinates of the camberline
(‘camberline.txt’), and the range of values of the angle of attack. The outputs are aerodynamic
characteristics and several plots. Some snippets of the code are attached here with a brief
contextual explanation.

Listing 1: Input values

Sweep over the desired angles of attack
minalpha = −6
maxalpha = 10
alphastep = 1
sweep(minalpha, maxalpha, alphastep, plotgam)

Towards the end of the code, you can find the values input for angle of attack, and the
function ‘sweep’ is called. This function is defined mainly to calculate the aerodynamic
characteristics at each value of angle of attack. The function is defined as follows.

Listing 2: Sweep function

def sweep(minalpha, maxalpha, alphastep, plotgam):
Initialize plotting arrays
alpha plot = []
cl plot = []
cm c4 plot = []
x cp plot = []

11

Start by loading the camber line points from disk
x c = np.loadtxt(’camberline.txt’)

Compute the corresponding theta positions
theta = np.arccos(1 − 2 ∗ x c[:, 0])

Approximate the slope of the camber line
dz dx = np.zeros(np.shape(x c)[0])
dz dx[0] = (x c[1, 1] − x c[0, 1]) / (x c[1, 0] − x c[0, 0])
dz dx[−1] = (x c[−1, 1] − x c[−2, 1]) / (x c[−1, 0] − x c[−2, 0])
for i in range(1, np.shape(x c)[0] − 1):

dz dx[i] = (x c[i + 1, 1] − x c[i, 1]) / (x c[i + 1, 0] − x c[i, 0])

Sweep over a range of angles of attack
alpha = minalpha
while alpha <= maxalpha:

[cl, cm c4, x cp] = thin airfoil(alpha, plotgam, x c, theta, dz dx)

Append data to the plotting arrays
alpha plot.append(alpha)
cl plot.append(cl)
cm c4 plot.append(cm c4)
x cp plot.append(x cp)

alpha = alpha + alphastep

It can be noted here that the file camberline.txt is used to input the points of the
camberline of the airfoil used, hence specifying the geometry. The other crucial part is calling
of the function ‘thin airfoil’. This function is at the heart of the code, mainly specifying all
the calculations of the aerodynamic coefficients. Some sections are discussed below.

Listing 3: A0 and An Coefficients

Generate the spectral coefficient array
A = np.zeros(math.floor(np.shape(x c)[0] / 2))

Compute the integrals for each A coefficient
A[0] = alpha − 1.0 / math.pi ∗ integrate(theta, dz dx)
for i in range(1, np.shape(A)[0]):

A[i] = 2.0 / math.pi ∗ integrate(theta, np.multiply(dz dx, np.cos(i ∗ theta)))

This section inside the function defined ‘thin airfoil’ shows the calculation of each A[]
coefficient clearly using the expressions obtained in equations 1.14 and 1.15.

Listing 4: Circulation

Generate the gamma over U distribution to plot skipping the leading edge
gam = np.zeros(np.shape(x c)[0])
for i in range(1, np.shape(x c)[0]):

12

gam[i] = A[0] ∗ ((1 + math.cos(theta[i])) / (math.sin(theta[i])))
for j in range(1, np.shape(A)[0]):

gam[i] = gam[i] + A[j] ∗ math.sin(j ∗ theta[i])
gam = 2 ∗ gam

This section calculates the values of γ(θ) by applying equation 1.8. The term is split into
two loops with the nested loop taking care of the Sum(Σ) expression.

Listing 5: Formulae

cl = math.pi ∗ (2 ∗ A[0] + A[1])
cm c4 = math.pi / 4 ∗ (A[2] − A[1])
x cp = 1 / 4 ∗ (1 + math.pi / cl ∗ (A[1] − A[2]))

These lines are simply application of the various expressions obtained for cl, cm,c/4, xcp from
the Thin airfoil theory.

1.3 Test case

The efficacy of any code can be judged by the comparison of the results from the code with
experimental data. NACA 2412 airfoil has been taken as a test case, and the experimental
data (obtained from reference [4]) has been compared and plotted as below. It can be observed
that the results are fairly close.

Figure 1.6: NACA2412 - CL vs α

13

Figure 1.7: NACA2412 - Moment coefficient

14

2 Vortex Panel Method

2.1 Summary and Derivation [2]

In this method, the airfoil considered is represented by a closed polygon comprised of vortex
panels as shown in figure 2.1. The number of panels is denoted by m, they’re assumed to be
planar and are named in clockwise direction starting from the trailing edge as shown in the
figure. On each panel, the circulation density varies from one corner to the other in a linear
fashion and is continuous across the corner.

Figure 2.1: Airfoil represented by Vortex panels

The condition that the surface of the airfoil should be a streamline of the flow is satisfied
by equating the normal component of velocity to zero at control points, which are specified as
the mid points of the panels. The end points of each panel are termed as the boundary points.

The velocity potential φ at the ith control point (xi, yi) is given by equation 2.1, where
V∞ is the velocity of the uniform flow, α is the angle of attack, m is the number of panels

φ(xi, yi) = V∞(xicosα + yisinα)−
m∑
j=1

∫
j

γ(sj)

2π
tan−1

(
yi − yj
xi − xj

)
dsj, (2.1)

where
γ(sj) = γj + (γj+1 − γj)

sj
Sj
. (2.2)

Now, consider the boundary condition represented in figure 2.1. It requires that the
velocity in the direction of ni, which is the unit vector directed outwards normal to the ith
control panel, be equal to zero. So

∂

∂ni
φ(xi, yi) = 0; i = 1, 2, ...,m

15

.
Carrying out the differentiation steps, we finally obtain

m∑
j=1

(Cn1ijγ
′

j + Cn2ijγ
′

j+1) = sin(θi − α); i = 1, 2, ...,m, (2.3)

where γ
′

= γ/2πV∞ is a dimensionless quantity representing circulation density, θi is the
orientation angle of the ith panel which is the angle between the panel surface and x axis
and the coefficients are expressed as

Cn1ij = 0.5DF + CG− Cn2ij

Cn2ij = D + 0.5QF/Sj − (AC +DE)G/Sj

.
These new constants in the above expressions are defined as

A = −(xi −Xj)cosθj − (yj − Yj)sinθj
B = (xi −Xj)

2 + (yi − Yj)2

C = sin(θi − θj)
D = cos(θi − θj)
E = (xi −Xj)sinθj − (yi − Yj)cosθj

F = ln

(
1 +

S2
j + 2ASj

B

)
G = tan−1

(
ESj

B + ASj

)
P = (xi −Xj)sin(θi − 2θj) + (yi − Yj)cos(θi − 2θj)

Q = (xi −Xj)cos(θi − 2θj)− (yi − Yj)sin(θi − 2θj)

.
These constants can be calculated for all possible values of i and j once the panel geometry

is specified.
The expression on the left hand side of equation 2.3 enclosed in the parantheses denotes

the normal velocity at the ith control point induced by the vortices on the jth panel. If we
equate i = j, we get the self-induced normal velocity at the ith control point, the coefficients
are simplied

Cn1ij = −1 and Cn2ij = 1.

Now, the Kutta condition has to be applied to ensure a smooth flow at the trailing edge.
In the present context, this condition (strength of the vorticity at the trailing edge equals
zero) can be represented as

γ
′

1 + γ
′

m+1 = 0. (2.4)

16

Combining the equations 2.3 and 2.4, we have (m+1) number of equations which are sufficient
to calculate (m+ 1) number of unknown values of γ

′
j.

To facilitate in writing the code to implement this method, this system of simultaneous
equations can be written in a more convenient form as

m+1∑
j=1

Anij
γ
′

j = RHSi; i = 1, 2, ...,m+ 1. (2.5)

Here, for i ≤ m+ 1

Ani1
= Cn1i1

Anij
= Cn1ij + Cn2ij−1

; j = 2, 3, ...,m

Anim+1
= Cn2im+1

RHSi = sin(θi − α)

, and, for i = m+ 1

Ani1
= Anim+1

= 1

Anij
= 0; j = 2, 3, ...,m

RHSi = 0

.

2.2 Explanation of the code

This section deals with a brief explanation of the code associated with the Vortex panel
method. The input parameters are the geometry of the airfoil (via a .txt file containing the
coordinates) and the range of values of angle of attack.

Listing 6: Input values

Load the airfoil geometry points
[n, points, centroids] = load points(plotgeo)

Sweep over all desired angles
minalpha = 0
maxalpha = 10
alphastep = 2.5
sweep(minalpha, maxalpha, alphastep, n, points, centroids, plotcl, plotcp)

Towards the end of the code, this section specifying the input parameters cna be found.
It can be observed that loading the geometry here is performed by a function ‘load points’.
The function can be found at the start of the code.

17

Listing 7: Specifying the geometry

def load points(plot):
Load the points from airfoil.txt (must be a closed trailing edge with first/last point

duplicated)
points = np.loadtxt(’airfoil.txt’)

Flip the array upside down if needed (depending on which way the nodes are ordered)
points = np.flipud(points)

Get the number of panels
n = np.shape(points)[0] − 1

Get the centroids of the panels
centroids = np.zeros((n, 2))
for i in range(0, n):

centroids[i, 0] = 0.5 ∗ (points[i, 0] + points[i + 1, 0])
centroids[i, 1] = 0.5 ∗ (points[i, 1] + points[i + 1, 1])

Plot the airfoil shape, endpoints, and centroids
plot.plot(points[:, 0], points[:, 1])
plot.set xlabel(’x/c’)
plot.set ylabel(’y/c’)
plot.set title(’Airfoil’)
plot.set ylim([−0.5, 0.5])
figcp.savefig(’plots/airfoil.pdf’)

return n, points, centroids

As shown, this function is defined to basically take the input text file and calculate the
number of panels, centroids (mid points of the panels).

The function ‘sweep’ which can be seen in the section dealing with input parameters is
defined basically to calculate the values of Cl for the different values of α .

Listing 8: Calculating Cl for the range of angle of attack values

def sweep(minalpha, maxalpha, alphastep, n, points, centroids, plotcl, plotcp):
Initialize arrays for plot lift curve
alpha plot = []
cl plot = []

Sweep over a range of angles of attack
alpha = minalpha
while alpha <= maxalpha:

Solve for all panels at angle of attack alpha
cl = solve panel(points, centroids, n, math.pi ∗ alpha / 180, plotcp)

Print the angle and lift coefficient

18

if cl < 1.3:
print(’Angle: ’, alpha, ’ Cl: ’, cl)

else:
print(’Angle: ’, alpha, ’ Cl: ’, cl, ’ WARNING: Stall Likely!’)

Save the values
alpha plot.append(alpha)
cl plot.append(cl)

alpha = alpha + alphastep

Put the point on the lift curve
plotcl.plot(alpha plot, cl plot, marker=”.”, markersize=6, label=r’$C L$’)
plotcl.legend()
plotcl.set xlabel(r’α’)
plotcl.set ylabel(r’$C L$’)
plotcl.set title(’Lift Curve’)
np.savetxt(’data/cl.txt’, np.c [alpha plot, cl plot], delimiter=’ ’)

return

It can be observed that the primary calculation of Cl is carried out by calling the function
‘solve panel’. This function is crucial and at the heart of this code, and has all the calculations
discussed in the theory.

Listing 9: Calculation of Cl
def solve panel(points, centroids, n, alpha, plot):

jmat = np.zeros((n, n))
kmat = np.zeros((n, n))
amat = np.zeros((n + 1, n + 1))
vvec = np.zeros((n + 1, 1))
svec = np.zeros((n + 1, 1))

Get the coefficients for all panels on each other
for i in range(0, n):

for j in range(0, n):
if j != i:

Get the coefficients for panel i and panel j
[a, d, e, f, g, sj, c1, c2] = coefficients(points, centroids, i, j)

Build the matrices
jmat[i, j] = −c2 / 2 ∗ f − c1 ∗ g
kmat[i, j] = −c2 + 1 / sj ∗ ((a ∗ c2 + d / 2) ∗ f + (a ∗ c1 + e ∗ c2) ∗ g)
svec[j] = sj

else:
kmat[i, j] = −1

19

Build the amat matrix, angle, and velocity
for i in range(0, n):

for j in range(0, n):
amat[i, j] = amat[i, j] + jmat[i, j] − kmat[i, j]
amat[i, j + 1] = amat[i, j + 1] + kmat[i, j]

angle = math.atan2((points[i + 1, 1] − points[i, 1]), (points[i + 1, 0] − points[i, 0]))
vvec[i] = 2 ∗ math.pi ∗ math.sin(alpha − angle)

Add the Kutta condition constraint
amat[n, 0] = 1.0
amat[n, n] = 1.0

Solve for the circulation
gam = np.linalg.solve(amat, vvec)

Get the pressure coefficient
cp = 1 − (gam ∗∗ 2)

Get the lift coefficient by integrating the circulation
cl = 0
for i in range(0, n):

cl = cl + 0.5 ∗ (gam[i] + gam[i + 1]) ∗ svec[i]
cl = cl[0] / 0.5

Plot the pressure coefficient
plot.plot(points[2:−2, 0], −cp[2:−2, 0], label=r’$\alpha = $’ + str(alpha / math.pi ∗ 180))
plot.legend()
plot.set xlabel(’x/c’)
plot.set ylabel(r’$−C P$’)
plot.set title(’Pressure Coefficient’)
np.savetxt(’data/cp ’ + str(alpha / math.pi ∗ 180) + ’.txt’, np.c [points[2:−2, 0], cp[2:−2, 0]],

delimiter=’ ’)

return cl

The various coefficients are calculated here calling yet another function ‘coefficients’.
This is defined before the ‘solve panel’ function, and is basically the application of various
expressions described after equation 2.3.

Listing 10: Coefficients

def coefficients(points, centroids, i, j):
Get the angles of both panels
phii = math.atan2((points[i + 1, 1] − points[i, 1]), (points[i + 1, 0] − points[i, 0]))
phij = math.atan2((points[j + 1, 1] − points[j, 1]), (points[j + 1, 0] − points[j, 0]))

20

Get all of the terms
a = −(centroids[i, 0] − points[j, 0]) ∗ math.cos(phij) − (centroids[i, 1] − points[j, 1]) ∗ math.

sin(phij)
b = (centroids[i, 0] − points[j, 0]) ∗∗ 2 + (centroids[i, 1] − points[j, 1]) ∗∗ 2
c1 = math.sin(phii − phij)
c2 = math.cos(phii − phij)
d = (centroids[i, 0] − points[j, 0]) ∗ math.cos(phii) + (centroids[i, 1] − points[j, 1]) ∗ math.

sin(phii)
sj = math.sqrt((points[j + 1, 0] − points[j, 0]) ∗∗ 2 + (points[j + 1, 1] − points[j, 1]) ∗∗ 2)
e = math.sqrt(b − a ∗∗ 2)
f = math.log((sj ∗∗ 2 + 2 ∗ a ∗ sj + b) / b)
g = math.atan((sj + a) / e) − math.atan(a / e)

return a, d, e, f, g, sj, c1, c2

2.3 Test case

The results from the code agree well with the experimental data of NACA 2412 as shown in
the plots below.

Figure 2.2: NACA2412 - Lift curve

21

Figure 2.3: NACA2412 - Pressure coefficient

22

3 Finite Wing - Prandtl’s Classical Lifting-line Theory

3.1 Summary of the theory [1]

The previous theories dealt with airfoils, generally considered to have an ‘infinite’ span. In
practical applications however, all wings have a finite span. The finite wing theory analyses
the characteristics differing from airfoil characteristics, like downwash, effective angle of
attack, and induced drag. The first successful theory to predict the aerodynamic properties
of a wing is Prandtl’s Lifting-line theory. It is explained briefly in this section with emphasis
on obtaining the final expressions of the coefficients.

Figure 3.1: Finite number of horseshoe vortices superimposed on lifting line

The wing is represented with a large number of horseshoe vortices, superimposed in such
a way that all their bound vortices coincide along a single line, termed the lifting line. The
figure 3.1 illustrates the concept showing just three vortices for clarity. It can be noted that
there are trailing vortices distributed along the span and the strength of each trailing vortex
is equal to the change in circulation along the lifting line.

Now, assuming an infinite number of horseshoe vortices superimposed along the lifting
line, each with infinitesimal strength dΓ. Here, the strength along the lifing line becomes a
smooth distribution Γ(y) with Γ0 being the circulation at the origin. Also, trailing vortices
here is a continuous vortex sheet trailing downstream. The total strength integrated across
the span of the wing will be zero, because it consists of pairs of opposing vortices of equal
strength.

Consider a small segment of the lifting line dy located at a distance y from the origin where
the circulation is given by Γ(y) and change in circulation over the segment is dΓ = (dΓ/dy)dy.
Also, the strength of the trailing vortex must equal the change in the circulation dΓ (as
discussed in the case above). As shown in figure 3.2, consider a particular trailing vortex
that intersects the lifting line at coordinate y, any segment dx of this vortex will induce a

23

Figure 3.2: Infinite number of horseshoe vortices superimposed

velocity dω at an arbitrary location on the lifting line y0 such that

dω = − (dΓ/dy)dy

4π(y0 − y)
. (3.1)

Integrating this equation from −b/2 to b/2, we can get the total velocity ω induced at y0

by the entire traiing vortex sheet as

ω(y0) = − 1

4π

∫ b/2

−b/2

(dΓ/dy)dy

y0 − y
. (3.2)

The induced angle of attack (due to the downwash) at y0 is given by

αi(y0) = tan−1

(
−ω(y0)

V∞

)
. (3.3)

Usually, ω is much smaller than V∞ which means αi is small enough to approximate

αi(y0) =
−ω(y0)

V∞
. (3.4)

Substituting the value of ω(y0), we get an expression for the induced angle of attack in terms
of the circulation distribution along the wing as

αi(y0) =
1

4πV∞

∫ b/2

−b/2

(dΓ/dy)dy

y0 − y
. (3.5)

24

We know the relation between sectional coefficient of lift and effective angle of attack is
given by

cl = a0[αeff(y0)− αL=0] = 2π[αeff(y0)− αL=0]. (3.6)

Two different expressions for Lift (per unit span) are considered, one by definition of lift
coefficient and second from Kutta-Joukowski theorem

L
′
= 1/2ρ∞V

2
∞c(y0)cl = ρ∞V∞Γ(y0). (3.7)

This gives us an expression for cl

cl =
2Γ(y0)

V∞c(y0)
. (3.8)

Solving for αeff, we get

αeff =
Γ(y0)

πV∞c(y0)
+ αL=0. (3.9)

We also know, from definition
αeff = α− αi. (3.10)

Therefore, solving for geometric angle of attack at y0, we obtain

α(y0) =
Γ(y0)

πV∞c(y0)
+ αL=0(y0) +

1

4πV∞

∫ b/2

−b/2

(dΓ/dy)dy

y0 − y
. (3.11)

This is the fundamental equation of Prandtl’s lifting-line theory. It should be noted that the
only unknown in this equation is Γ; all the other terms are known for a given wing design at
a given geometric angle of attack in a flow with a given freestream velocity. Thus solution of
Equation 3.11 gives us the circulation function Γ = Γ(y0), where y0 ranges from −b/2 to b/2.
This, in turn, gives us the Lift, Coefficient of lift and Induced drag.

We proceed by assuming a general circulation distribution in the form of a Fourier sine
series considering the following transformation of coordinates

y = − b
2
cosθ. (3.12)

So, the coordinate along the wing span is now θ, 0 ≤ θ ≤ π; the circulation distribution is
assumed as

Γ(θ) = 2bV∞

N∑
1

Ansinnθ. (3.13)

where N is the number of terms in the Fourier series, higher number of terms gives higher
accuracy. Differentiating this equation, we obtain

dΓ

dy
=
dΓ

dθ

dθ

dy
= 2bV∞

N∑
1

nAncosnθ
dθ

dy
. (3.14)

25

Substituting these expressions of Γ and dΓ/dy in the fundamental equation, we obtain

α(θ0) =
2b

πc(θ0)

N∑
1

Ansinnθ0 + αL=0(θ0) +
N∑
1

nAn
sinnθ0

sinθ0

. (3.15)

It can be observed that, for a given span location (θ0 is specified), the only unknowns
in equation 3.15 are the N number of coefficients Ans. So, if we take N different locations
along the span and evaluate Equation 3.15 for each of these N locations, we end up with a
system of N independent algebraic equations with N unknowns (the coefficients). Solving this
system, we can obtain all the values for the Ans. Hence, the general circulation distribution
Γ(θ) can be obtained. The lift coefficient follows.

Lift per span distribution is given by Kutta-Joukowski theorem (in terms of span length
coordinate y) as

L
′
(y0) = ρ∞V∞Γ(y). (3.16)

The total lift can be obtained by integrating this equation over the span, hence

L = ρ∞V∞

∫ b/2

−b/2
Γ(y)dy. (3.17)

Then the lift coefficient, by definition, will be given by

CL =
L

q∞S
=

2

V∞

∫ b/2

−b/2
Γ(y)dy. (3.18)

Substituting the expression we assumed for the general circulation distribution, equation
3.13, we get

CL =
2b2

S

N∑
1

An

∫ π

0

sinnθsinθdθ. (3.19)

Here, the integral can be evaluated as∫ π

0

sinnθsinθdθ =

{
π/2 for n = 1

0 for n 6= 1

.
Hence, the lift coefficient simplifies to

CL = A1π
b2

S
= A1πAR. (3.20)

Next, moving on to induced drag coefficient. It follows from definition of Induced drag
(assuming induced angle is small)

D
′

i = L
′
αi. (3.21)

26

Total induced drag is obtained by integrating this expression over the span, hence

Di =

∫ b/2

−b/2
L
′
(y)αi(y)dy. (3.22)

The induced drag coefficient is given by

CD,i =
Di

q∞S
=

2

V∞S

∫ b/2

−b/2
Γ(y)αi(y)dy. (3.23)

Now, substituting our assumed expression for the circulation, i.e. equation 3.13, we get

CD,i =
2b2

S

∫ π

0

(
N∑
1

Ansinnθ

)
αi(θ)sinθdθ. (3.24)

The expression for induced angle of attack can be obtained from equation 3.5

αi(y0) =
1

4πV∞

∫ b/2

−b/2

(dΓ/dy)dy

y0 − y
=

1

π

N∑
1

nAn

∫ π

0

cosnθ

cosθ − cosθ0

dθ. (3.25)

Solving the integral using its standard form, we get

αi(θ0) =
N∑
1

nAn
sinnθ0

sinnθ0

, (3.26)

which can also be written as

αi(θ) =
N∑
1

nAn
sinnθ

sinnθ
. (3.27)

Hence, equation 3.24 becomes

CD,i =
2b2

S

∫ π

0

(
N∑
1

Ansinnθ

)(
N∑
1

nAnsinnθ

)
dθ. (3.28)

This equation involves the product of two summations. From the standard integral∫ π

0

sinmθsinkθ =

{
0 for m 6= k

π/2 for m = k
. (3.29)

This means all the mixed product terms having unequal subscripts (like A1A2,A2A4 etc)
in equation 3.28 reduce to zero, simplifying it to

CD,i =
2b2

S

(
N∑
1

nA2
n

)
π

2
= πAR

N∑
1

nA2
n

= πAR

(
A2

! +
N∑
2

nA2
n

)

27

,

= πARA2
1

[
1 +

N∑
2

n

(
An
A1

)2
]
. (3.30)

Substituting the value of CL obtained in equation 3.20, we get

CD,i =
C2
L

πAR
(1 + δ), (3.31)

where δ =
∑N

2 n(An/A1)2. Now, defining a span efficiency factor as e = (1 + δ)−1, equation
3.31 becomes

CD,i =
C2
L

πeAR
. (3.32)

3.2 Explanation of the code

The input parameters here are Wingspan, Chord length in terms of spanwise location,
Geometric angle of attack, Zero-lift angle of attack, Number of terms in the expansion(affects
accuracy of the results).

Listing 11: Input values

Define the input parameters
b = 2 # Wingspan (m)
c = 1 − abs(y) / 4 # Chord length as a function of spanwise location (m)
alpha = 1 # Geometric angle of attack of the wing (deg)
alpha 0 = −1 # Zero−lift angle of attack as a function of spanwise location (deg)
N = 20 # Number of terms in the expansion

Call the main function
finite wing(b, c, alpha 0, alpha, N, true)

Call the drag polar plotter
drag polar(b, c, alpha 0, N)

Towards the end of the code, you can find the input parameters defined. It can be seen
that two functions have been called here. The ‘drag polar’ function simply does the function
of calculating CL and CDi

for the range of angle of attack values and plotting them. The
crucial function which performs these calculations following the theory discussed above is the
‘finite wing’ function. A few sections are discussed below.

Listing 12: An Coefficients

Generate the entries in the linear system
for i in range(0, N):

Get the theta 0 position of this point
theta 0 = math.pi ∗ (i + 0.5) / N

28

beta[i] = (alpha − alpha 0).subs(theta, theta 0)

Generate the coefficient matrix
for j in range(0, N):

First term
A[i, j] = 2 ∗ b / (math.pi ∗ c.subs(theta, theta 0)) ∗ sin((j + 1) ∗ theta 0)

Second term
A[i, j] += (j + 1) ∗ sin((j + 1) ∗ theta 0) / sin(theta 0)

Solve the linear system for the An coefficients
An = np.linalg.solve(A, beta)

The equations written here to generate the coefficient matrix is obtained from Equation
3.15, solving a system of N number of independent algebraic equations to get the N number
of coefficients. These values are stored in the ‘An’ array.

Listing 13: Calculating Lift and Drag Coefficients

Get the lift coefficient
Cl = An[0] ∗ math.pi ∗ b ∗∗ 2 / S

Get the delta coefficient for the drag coefficient
delta = 0
for i in range(1, N):

delta += (i + 1) ∗ (An[i] / An[0]) ∗∗ 2

Compute the induced drag coefficient
Cdi = Cl ∗∗ 2 / (math.pi ∗ AR) ∗ (1 + delta)

Get the span efficiency factor
eps = 1 / (1 + delta)

The computation of lift and drag coefficients here are straighforward applications of the
expressions obtained in the theory, equations 3.20 and 3.31.

Listing 14: Calculating Circulation

Compute the circulation distribution
gamma = 0
for i in range(0, N):

gamma += 2 ∗ b ∗ An[i] ∗ sin((i + 1) ∗ theta)

gamma = gamma.subs(theta, acos(y ∗ − 2 / b))

The computation of circulation is a direct application of the general expression we assumed,
equation 3.13.

29

3.3 Validation

For validating the Finite wing code, two different plots were used from the relevant section of
reference [1]. First, circulation distribution generated using a Numerical Non-linear method
for rectangular wings of aspect ratios 4 and 8 (NACA 1412) are compared with the values
obtained from the code. Excellent agreement can be observed, as shown in figures 3.3 and
3.4. Further, figure 3.5 shows comparison of values of CL for a rectangular wing of aspect
ratio 5.536 (NACA 0015).

Figure 3.3: Comparison of Γ/Γ0 for a rectangular wing of AR 4 (NACA1412)

30

Figure 3.4: Comparison of Γ/Γ0 for a rectangular wing of AR 8 (NACA1412)

Figure 3.5: Comparison of CL for a rectangular wing of AR 5.536 (NACA0015)

31

4 Performance

4.1 Summary of the theory involved [3]

4.1.1 General performance parameters

Thrust required First we are going to discuss the thrust required to maintain steady, level
flight. Steady flight means the aircraft is at a constant speed i.e. no acceleration and level
flight means both climb angle and bank angle are zero i.e. there is no change in altitude. The
thrust required is a function of airspeed, altitude, size, shape, and weight of the aircraft. The
forces acting on an aircraft in steady, level flight is shown in figure 4.1.

Figure 4.1: Forces acting on an aircraft in level flight

Since there is no acceleration, the drag force equals the thrust component in the direction
of flight

D = TRcosαT . (4.1)

The lift must equal the weight minus the thrust component perpendicular to the direction
of flight

L = W − TRsinαT . (4.2)

From these two equations, it is apparent that

L

D
=
W − TRsinαT
TRcosαT

. (4.3)

or, solving for the expression for Thrust required

TR =
W

(L/D)cosαT + sinαT
. (4.4)

32

Now, the total drag force, which is the sum of parasitic drag and induced drag, can be
written as

D =
1

2
ρV 2SwCD =

1

2
ρV 2Sw

(
CDp +

C2
L

πesRA

)
, (4.5)

where V is the airspeed, Sw is the area of the main wing, es is the span efficiency factor, RA

is the aspect ratio, and CDp represents the parasitic drag coefficient. CDp can be written as a
parabolic function of CL

CDp = CD0 + CD0,LCL + CD0,L2C2
L. (4.6)

Substituting equation 4.6 in equation 4.5 and combining the quadratic term from the
expression for the parasitic drag with the induced drag term, the total drag can be expressed
as

D =
1

2
ρV 2Sw

(
CD0 + CD0,LCL +

C2
L

πeRA

)
. (4.7)

Here e is the Oswald efficiency factor. Therefore

L

D
=
CL
CD

=
CL

CD0 + CD0,LCL +
C2

L

πeRA

. (4.8)

Substituting equation 4.2 in the definition of CL, we have

CL =
L

1
2
ρV 2Sw

=
W − TRsinαT

1
2
ρV 2Sw

. (4.9)

Using the expression for Thrust required from 4.4

CL =
W

1
2
ρV 2Sw

[
1− sinαT

(L/D)cosαT + sinαT

]
=

W
1
2
ρV 2Sw

[
1

1 + (D/L)tanαT

]
. (4.10)

Using the equations 4.8 and 4.10, both CL and L/D as a function of airspeed can be
determined numerically. A typical example of a plot of lift-drag ratio versus airspeed is shown
in figure 4.2.

33

Figure 4.2: Typical variation of L/D ratio vs Airspeed at sea level

When the thrust required is plotted versus airspeed, for a typical general aviation aircraft,
it looks as shown in figure 4.3.

Figure 4.3: Typical variation of Thrust Required vs Airspeed

From equation 4.4, we can obtain the optimum thrust angle, i.e. the value of αT which
minimizes the thrust required. This is done by differentiating the equation with respect to
αT and equating the result to zero. Thus, we get

αT = tan−1(D/L). (4.11)

For conventional airplanes, in most cases, both αT and (D/L) are small values. Thus, we

34

can safely use the following approximations for preliminary performance calculations

cosαT ≈ 1

sinαT ≈ αT

(D/L)sinαT ≈ α2
T ≈ 0

. This is termed small-thrust-angle approximation. Applying this, expressions for Thrust
required and Lift become simplified and equation 4.4 reduces to

TR = D, (4.12)

L = W, (4.13)

TR =
W

L/D
. (4.14)

Power required The power required can be obtained by multiplying the thrust required
by the airspeed and cosine of the thrust angle.

PR = TRV cosαT = DV, (4.15)

where PR is the power required for steady level flight. Figure 4.4 shows a typical plot of
power required versus airspeed for a general aviation aircraft.

Figure 4.4: Typical variation of Power Required vs Airspeed

Rate of Climb The rate of climb is a function of the aerodynamic design, weight of the
aircraft and the power available from the engines. To find out the steady rate of climb,
consider an airplane in unaccelerated climbing flight as shown in figure 4.5. TA denotes the
thrust available, and γ is the angle between the flight path relative to the ambient air and
the horizontal.

35

Figure 4.5: Forces acting on an aircraft in climb

The drag must be equal to the component of thrust parallel to the flight path minus the
component of weight aligned with the flight path

D = TAcosαT −Wsinγ. (4.16)

The lift can be computed as the weight component perpendicular to the flight path minus
the thrust component normal to the flight path

L = Wcosγ − TAsinαT . (4.17)

Applying these expressions to equation 4.7 and definition of lift coefficient, we can obtain
the general formulation for steady climbing flight

1

2
ρV 2Sw

(
CD0 + CD0,LCL +

C2
L

πeRA

)
= TAcosαT −Wsinγ. (4.18)

1

2
ρV 2SwCL = Wcosγ − TAsinαT . (4.19)

The rate of climb, Vc, is basically the vertical component of the airplane’s velocity, i.e.
airspeed multiplied by the sine of flight path angle

Vc = V sinγ.

From equation 4.16, we can obtain

sinγ =
TAcosαT −D

W
. (4.20)

36

Figure 4.6: Typical variation of Rate of Climb vs Airspeed at sea level

Thus, rate of climb can be written as

Vc =
V TAcosαT − V D

W
. (4.21)

Now, since the climb angle is mostly small, we can use the value of drag for level flight
here as an approximate estimate. Substituting the expression we discussed for level flight
drag, the rate of climb can be written as

Vc =
V TAcosαT − V TRcosαT

W
. (4.22)

Further, the product of airspeed with thrust available and cosine of the thrust angle, is the
dot product of the thrust vector with the velocity vector which is the definition of Power
available, PA. Also, the airspeed multiplied by thrust required for level flight and cosine of
the thrust angle is the definition of power required for level flight, PR. Thus, the rate of
climb can be further written as

Vc =
PA − PR

W
. (4.23)

Figure 4.6 shows a typical plot of Rate of Climb versus Airspeed for a general aviation
aircraft at sea level for different throttle settings, τ defined as a fraction of the full-throttle
power available.

Fuel consumption Fuel consumption directly affects the endurance, defined as the total
time an aircraft can fly on a given tank of fuel. To maximize endurance for a given aircraft

37

and fuel capacity, we need to minimize fuel consumption per unit time. The power-specific
fuel consumption for an engine, qP , can be defined as the ratio between the weight of fuel
consumption per unit time and the available power.

qP =
Q̇

PA
. (4.24)

For steady level flight, the power available will be equal to the power required, PA = PR.
Hence, we can find fuel consumption per unit time, represented by q in the code, by simply
multiplying qP and PR

q = qP .PR. (4.25)

The fuel consumption varies with airspeed for steady level flight as shown in figure 4.7.

Figure 4.7: Typical variation of Fuel Consumption vs Airspeed for steady level flight

Specific range Range is defined as the total distance an aircraft can fly for a given tank of
fuel. Range can also be maximized by minimizing fuel consumption. It is helpful to define
Specific range as the fuel consumed per unit distance.

rs =
q

v
. (4.26)

A typical plot of variation of Specific range with airspeed is shown in the figure 4.8.

38

Figure 4.8: Typical variation of Specific Range vs Airspeed at sea level

Stall speed The minimum airspeed at which the airplane can fly is termed the stall speed.
The level flight stall speed is an important parameter and can be obtained as follows. Consider
the expression for CL applying the small-thrust-angle approximation

CL =
W

1
2
ρV 2Sw

. (4.27)

Solving for the expression for airspeed

V =

√
2(W/Sw)

ρCL
. (4.28)

It can be seen that the value of velocity will be minimum when CL is at the maximum
value. Therefore

Vmin =

√
2

CLmax

√
(W/Sw)

ρ
. (4.29)

4.1.2 Static stability

Static margin Similar to the aerodynamic center of an airfoil, the whole aircraft has a
point about which the total pitching moment is independent of the angle of attack. This
point is termed stick-fixed neutral point as the airplane will be neutrally stable in pitch if
the center of gravity is located at this point. For an aircraft to be statically stable, it can
be proven that the center of gravity must be forward of the stick-fixed neutral point. The
distance of the CG from the neutral point, expressed as a fraction of the mean chord length,
is termed stick-fixed static margin. The expression is given in the equation 4.30.

39

Figure 4.9: Understanding the location of the stick-fixed neutral point

lnp
c̄w

=
lwCLw,α + Stlt

Sw
ηtCLt,α(1− εd,α)

c̄w

[
CLw,α + St

Sw
ηtCLt,α(1− εd,α)

] . (4.30)

The variables seen here denote

lnp = Distance between the stick-fixed neutral point and the CG

c̄w = Mean chord length of the wing

lw = Distance from CG to the aerodynamic center of the wing

lt = Distance from CG to the aerodynamic center of the tail

CLw,α = Lift slope for the main wing

CLt,α = Lift slope for the isolated tail

Sw, St = Planform areas of the wing and tail respectively

ηt = Tail efficiency(can vary between 0.8 and 1.2 but usually assumed to be 1)

εd,α = Change in the downwash angle with respect to the angle of attack

.

Yaw Stability Derivative Static yaw stability, which is the ability to naturally produce a
restorative yawing moment opposing any disturbance in yaw faced by the airplane, is provided
by the vertical tail mainly. The general criterion for static yaw stability mathematically is

40

given by
∂Cn
∂β
≡ Cn,β>0. (4.31)

Cn,β represents the yaw stability derivative or yaw stiffness. The contribution of the vertical
tail to the yaw stability derivative, which we are interested here in this section, is given by
the equation 4.32. The various terms involved in that expression can be understood better
through the figure 4.10 which shows the various yawing moments experienced by an aircraft
in sideslip.

Figure 4.10: Top view of an airplane experiencing sideslip

(∆Cn,β)v = ηv
Svlv
Swbw

CLv ,α(1− εs,β)v. (4.32)

41

The variables seen in this equation denote

ηv = Dynamic pressure ratio for the vertical tail

lv = Distance from CG to the aerodynamic center of the vertical tail

bw = Wingspan

CLv ,α = Lift slope for the vertical tail

Sw, Sv = Planform areas of the wing and vertical tail respectively

εs,β = Sidewash gradient

εs,β ≡
∂εs
∂β

εs = Sidewash angle

β = Sideslip angle

.

Roll Stability Derivative If any disturbance in bank angle naturally produces a restoring
rolling moment, the aircraft is said to have static roll stability. The general criterion for an
aircraft to be statically stable in roll is given by

∂Cl
∂β
≡ Cl,β<0, (4.33)

Cl,β represents the roll stability derivative. The contribution of the wing dihedral to the
roll stability derivative is given by the expression 4.34. The effect can be understood better
from the figure 4.11 which shows what happens to the rolling moment when an airplane is
experiencing sideslip.

42

Figure 4.11: Front view of airplane showing effect of dihedral

(∆Cl,β)Γw = −2Γ

3π
κlCLw,α. (4.34)

The contribution of vertical tail to the roll stability derivative can be obtained by

(∆Cl,β)v = −ηv
Svhv
Swbw

(1− εs,β)vCLv ,α. (4.35)

A rough estimation of the contribution of the horizontal stabilizer to the rolling moment
is calculated by the equation 4.36, where the positive sign is used when the stabilizer is
mounted below the vertical tail and the negative sign is used when it is mounted above the
vertical tail.

(∆Cl,β)h = ±0.08ηv
Svbh
Swbw

(1− εs,β)vCLv ,α. (4.36)

The total roll derivative can be found by simply adding the individual contributions.

4.2 The python code

4.2.1 Performance

This code calculates the general performance parameters using the equations discussed in
the theory above. There are a wide range of inputs needed including the environmental

43

values, the aircraft parameters (Cessna 172 in this example), the engine parameters. The
code snippet is included here, the variables defined are explained sufficiently in the comments.

Listing 15: Input values

Environmental Parameters
rho 0 = 1.22 # Air density at sea level (kg/mˆ3)
rho = 1.22 # Air density at current altitude (kg/mˆ3)
g = 9.81 # Acceleration due to gravity (m/sˆ2)

Aircraft Parameters (Cessna 172)
m = 1000 # Aircraft mass (kg)
s w = 16.2 # Wing area (mˆ2)
c d0 = 0.035 # Parasitic drag coefficient
c d0l = 0 # Linear drag coefficient term (typically 0)
e = 0.7 # Oswald efficiency factor
ar = 7.32 # Wing aspect ratio
c lmax nf = 1.6 # Maximum lift coefficient with no flaps
c lmin nf = −1.3 # Minimum lift coefficient without flaps
c lmax f = 2.1 # Maximum lift coefficient with flaps
n pll = 3.8 # Maximum design g−loading
n nll = −1.5 # Minimum design g−loading

Propulsion Parameters
p a0 = 119000 # Engine power at sea level (W)
q p = 8.5E−7 # Specific power fuel consumption ((N/s)/W)
alpha t = 0.08172675000993017 # Offset between thrust and angle of attack (radians)

The function stall speeds is defined to calculate and print the stall speeds both with and
without flaps using the corresponding CL,max value, using equation 4.29.

Listing 16: Stall speeds

def stall speeds(w, s w, rho, c lmax nf, c lmax f):
Computes the aircraft stall speeds with and without flaps

Equation 3.8.3 of Phillips
v min nf = math.sqrt(2 / c lmax nf) ∗ math.sqrt(w / s w / rho)
v min f = math.sqrt(2 / c lmax f) ∗ math.sqrt(w / s w / rho)

Print the stall speeds
print(’\nAircraft Stall Speeds’)
print(’Without Flaps: ’, v min nf, ’ (m/s)’)
print(’With Flaps: ’, v min f, ’ (m/s)\n’)

return v min nf, v min f

The lift to drag function is defined to find the Lift to drag ratio and optimize the thrust
offset. We start out by assuming an initial value for L/D ratio as 5, as an input to find the

44

initial CL value using equation 4.10, and then iterate using equation 4.8. Then, the angle
between the thrust vector and the direction of flight is calculated using equation 4.11.

Listing 17: L/D ratio

def lift to drag(alpha t, w, s w, rho, c d0, c d0l, e, ar):
Plots the lift to drag ratio as a function of airspeed
figure, plot = plt.subplots()

vmin = 20 # Minimum airspeed to plot
vmax = 80 # Maximum airspeed to plot

v = np.arange(vmin, vmax, 0.1)

Initially guess that lift to drag ratio is 5
lod = 0 ∗ v + 5

Iterate to find the lift to drag ratio using Equations 3.2.10, 3.2.8 of Phillips
for i in range(0, 10):

cl = w / (0.5 ∗ rho ∗ v ∗∗ 2 ∗ s w) ∗ (1 / (1 + 1 / lod ∗ math.tan(alpha t)))
lod = cl / (c d0 + c d0l ∗ cl + cl ∗∗ 2 / (math.pi ∗ e ∗ ar))

Report a better thrust offset using Equation 3.2.16 of Phillips
print(’Optimization of Thrust Vector’)
print(’A Better Thrust Offset: ’, math.atan(1 / np.max(lod)), ’\n’)

Plot the results
plot.plot(v, lod)
plot.set xlabel(’Airspeed (m/s)’)
plot.set ylabel(’L/D Ratio’)
plot.set title(’Lift to Drag Ratio vs. Airspeed’)
figure.savefig(’plots/lift to drag.pdf’)
np.savetxt(’data/lift to drag.txt’, np.c [v, lod], delimiter=’ ’)

return v, lod

The rest of the functions are straightforward applications of the concepts discussed above,
specifically equations 4.14, 4.15, 4.23, 4.25, 4.26, to calculate the corresponding parameters
and plot the results.

Listing 18: Performance calculations

def thrust required(w, v, lod):
Computes the thrust required as a function of airspeed
figure, plot = plt.subplots()

Use Equation 3.2.22 of Phillips
t r = (np.ones(np.size(lod)) ∗ w) / lod

45

Plot the results
plot.plot(v, t r / 1000)
plot.set xlabel(’Airspeed (m/s)’)
plot.set ylabel(’Thrust Required (kN)’)
plot.set title(’Thrust Required vs. Airspeed’)
figure.savefig(’plots/thrust required.pdf’)
np.savetxt(’data/thrust required.txt’, np.c [v, t r / 1000], delimiter=’ ’)

return t r

def power required(t r, v, alpha t):
Computes the power required as a function of airspeed
figure, plot = plt.subplots()

Use Equation 3.3.1 of Phillips
p r = t r ∗ v ∗ math.cos(alpha t)

Plot the results
plot.plot(v, p r / 1000)
plot.set xlabel(’Airspeed (m/s)’)
plot.set ylabel(’Power Required (kW)’)
plot.set title(’Power Required vs. Airspeed’)
figure.savefig(’plots/power required.pdf’)
np.savetxt(’data/power required.txt’, np.c [v, p r / 1000], delimiter=’ ’)

return p r

def climb rate(rho 0, rho, p a0, p r, w, v):
Computes the rate of climb for various throttle settings
figure, plot = plt.subplots()

Loop over a number of different throttle settings using Equation 3.4.8 of Phillips
for i in range(0, 11):

tau = i / 10.0 # The percent of max power
p a = tau ∗ rho / rho 0 ∗ p a0 # Compute the available power adjusting for altitude
v c = (p a − p r) / w # Compute the climb rate

Plots the results for each power setting
plot.plot(v, v c, label=r’$\tau = $’ + str(tau))
np.savetxt(’data/climb rate tau=’ + str(i) + ’.txt’, np.c [v, v c], delimiter=’ ’)

Plot the results

46

plot.set xlabel(’Airspeed (m/s)’)
plot.set ylabel(’Climb Rate (m/s)’)
plot.set title(’Climb Rate vs. Airspeed for Various Power Settings’)
plot.legend()
figure.savefig(’plots/climb rate.pdf’)

return

def fuel consumption(p r, v, q p):
Computes the specific fuel consumption to maintain level flight

Compute the fuel consumption using Equations 3.5.1 and 3.5.4 of Phillips
q = q p ∗ p r

Plot the results
figure, plot = plt.subplots()
plot.plot(v, q / 9.81 ∗ 3600)
plot.set xlabel(’Airspeed (m/s)’)
plot.set ylabel(’Fuel Consumption (kg/hr)’)
plot.set title(’Fuel Consumption vs. Airspeed’)
figure.savefig(’plots/fuel consumption.pdf’)
np.savetxt(’data/fuel consumption.txt’, np.c [v, q / 9.81 ∗ 3600], delimiter=’ ’)

return q

def specific range(q, v):
Plots the specific range as a function of airspeed

Compute the specific range
sr = q / v

Plot the results
figure, plot = plt.subplots()
plot.plot(v, sr / 9.81 ∗ 1000)
plot.set xlabel(’Airspeed (m/s)’)
plot.set ylabel(’Specific Range (kg/km)’)
plot.set title(’Specific Range vs. Airspeed’)
figure.savefig(’plots/specific range.pdf’)
np.savetxt(’data/fuel consumption.txt’, np.c [v, q / 9.81 ∗ 1000], delimiter=’ ’)

return

47

4.2.2 Static Stability

This code deals with finding the values of static margin, yaw derivative and roll derivative
for a given aircraft.

Listing 19: Input values

Aircraft parameters
cbar w = 1.66255 # Mean chord of the main wing (m)
s w = 16.7225 # Wing area (mˆ2)
s h = 3.34451 # Horizontal stabilizer area (mˆ2)
s v = 1.105546 # Vertical stabilizer area (mˆ2)
b w = 10.0584 # Span of the main wing (m)
b h = 3.6576 # Span of the horizontal stabilizer (m)
h v = 0.9144 # Distance above center of gravity to the aerodynamic center of the tail
c lw alpha = 4.44 # Lift slope of the main wing
c lh alpha = 3.97 # Lift slope of the horizontal stabilizer
c lv alpha = 3.40 # Lift slope of the horizontal stabilizer
l w = −0.216408 # Distance aft of the center of gravity to aerodynamic center of the main wing

(m)
l h = 4.355592 # Distance aft of the center of gravity to aerodynamic center of the horizontal

stabilizer (m)
l v = 4.514088 # Distance aft of the center of gravity to aerodynamic center of the vertical

stabilizer (m)
eta h = 1.0 # Dynamic pressure ratio relative to the free stream on the horizontal stabilizer
eta v = 1.0 # Dynamic pressure ratio relative to the free stream on the vertical stabilizer
eps d alpha = 0.44 # Down wash gradient, or the change in down wash with angle of attack
eps s beta v = −0.10 # Side wash gradient, or the change in side wash with angle of attack
gamma = −0.1 # Wing dihedral angle (degrees)
kappa l = 1.07 # Wing dihedral factor (See Figure 5.6.3 of Phillips)
kappa gamma = 0.83 # Wing dihedral factor (See Figure 5.6.3 of Phillips)

Using equations 4.30, 4.32, 4.34, 4.35, 4.36, the required values are determined.

Listing 20: Input values

def static margin(s w, s h, c lw alpha, c lh alpha, l w, l h, eta h, eps d alpha, cbar w):
Example 4.4.1 of Phillips
sm = (l w ∗ c lw alpha + (s h ∗ l h) / (s w) ∗ eta h ∗ c lh alpha ∗ (1 − eps d alpha)) / (

cbar w ∗ (c lw alpha + s h / s w ∗ eta h ∗ c lh alpha ∗ (1 − eps d alpha)))

Print the static margin
print(’Static Margin: ’, round(sm ∗ 100, 2), ’% (recommended 5−>15%)’, sep=’’)

return

def yaw derivative(eta v, s v, s w, l v, l w, b w, c lv alpha, eps s beta v):
Equation 5.2.7 of Phillips

48

deltac n beta v = eta v ∗ (s v ∗ l v) / (s w ∗ b w) ∗ c lv alpha ∗ (1 − eps s beta v)

Print the yaw stability derivative
print(’Yaw Stability Derivative: ’, round(deltac n beta v, 3),

’ (recommended 0.06−>0.15, vertical stabilizer contribution only!)’, sep=’’)

return

def roll derivative(gamma, kappa gamma, kappa l, c lw alpha, h v):
Convert the dihedral angle to radians
gamma = gamma ∗ math.pi / 180

Get the contribution from the main wing, assuming negligible sweep, via Equation 5.6.13
in Phillips

deltac l beta gammaw = −(2 ∗ math.sin(gamma)) / (
3 ∗ math.pi ∗ math.cos(gamma) ∗∗ 4) ∗ kappa gamma ∗ kappa l ∗ c lw alpha

Get the contribution from the vertical stabilizer via Equation 5.6.22 in Phillips
deltac l beta v = −eta v ∗ (s v ∗ h v) / (s w ∗ b w) ∗ (1 − eps s beta v) ∗ c lv alpha

Get the contribution from the horizontal stabilizer via Equation 5.6.23 in Phillips (
assuming conventional tail)

deltac l beta h = + 0.08 ∗ eta v ∗ (s v ∗ b h) / (s w ∗ b w) ∗ (1 − eps s beta v) ∗ c lv alpha

Get the total roll stability derivative
deltac n beta v = deltac l beta gammaw + deltac l beta v + deltac l beta h

Print the roll stability derivative
print(’Roll Stability Derivative: ’, round(deltac n beta v, 3), ’ (recommended −0.1−>0)’,

sep=’’)

return

4.3 Validation

4.3.1 Performance code

The performance.py code is run using the input parameters for Cessna 172 aircraft. A
preliminary validation of this code was done by comparing the general curve shapes obtained
in the resulting plots with the typical plots discussed in the theory section. The plots resulting
from the code are included below and it can be observed that they agree fairly well with
the theory. These plots are a result of the code run at Sea level (setting density at current
altitude input equal to 1.22 kg/m3).

49

Figure 4.12: Lift-to-Drag ratio Figure 4.13: Thrust Required

Figure 4.14: Power Required Figure 4.15: Rate of Climb

50

Figure 4.16: Fuel consumption
Figure 4.17: Specific Range

Furthermore, a few data points resulting from the code were compared with experimental
data furnished in the aircraft’s handbook [5].

1. From reference [5], the value of maximum Rate of Climb = 770 fpm = 3.9 m/s at an
airspeed value of 73 kts = 37.5 m/s for full throttle (τ = 1) at sea level. In comparison,
the code was run at sea level (i.e. setting the input density value to 1.22 kg/m3), and
the value of maximum rate of climb was found to be 9.1 m/s at an airspeed value of
27.5 m/s. At a speed of 37.5 m/s, the value of climb rate was found to be 8.6 m/s.

2. Next, we attempt to compare Specific Range values. From the handbook [5], under
cruise performance, for 75% power at 8000 feet, Range value is indicated as 485 nm =
898.2 kms, for 40 gallons usable fuel. Considering density of the fuel (Aviation grade
straight mineral oil) as 0.88 kg/ltr, the weight of the fuel corresponding to 40 gallons
(= 151.4 ltrs) would be around 133 kgs. Dividing the value of range with the weight of
fuel consumed, the specific range value = 0.15 kg/km. Also, maximum cruise speed,
75% power at 8000 feet, is equal to 122 kts = 63 m/s. Running the code taking altitude
as 8000 feet, (i.e. setting the input density value to 0.95 kg/m3), value of specific range
at an airspeed of 63 m/s is obtained as 0.11 kg/km.

3. Both of the above points show a discrepancy between the experimental value and the
code. This deviation can be attributed to the fact that the code does not take actual
propulsive efficiencies into account. Further information is needed to determine the
actual power available after accounting for the aerodynamic efficiency of the propulsion
system.

4. From the results of the code, maximum L/D ratio is around 10.7, and from a different
analysis [6] maximum L/D ratio is calculated as 10.9, which shows good agreement.

51

References

[1] John D. Anderson, Jr., Fundamentals of Aerodynamics, sixth ed., McGraw-Hill Education,
New York, 2017.

[2] Arnold M. Kuethe and Chuen-Yen Chow, Foundations of Aerodynamics Bases of Aerody-
namic Design, fifth ed., John Wiley & Sons, Inc., New York, 1998.

[3] Warren F. Phillips, Mechanics of Flight, John Wiley & Sons, Inc., New Jersey, 2004.

[4] Ira H. Abbott, Albert E. von Doenhoff, and Louis S. Stivers, Jr., Report No. 824, Summary
of Airfoil Data, NACA.

[5] Pilot’s Operating Handbook, Cessna Skyhawk 172N, Cessna Aircraft Company, Kansas,
1977.

[6] John McIver B.Eng., Cessna Skyhawk Performance Assessment, Temporal images.
http//temporal.com.au/c172.pdf

52

